
Cloud Application Architecture Trends | Cover

Cloud Application
Architecture Trends

Authors:
Caleb Groom, Director, Product and Engineering
Ryan Walker, DevOps Automation Engineer
BK Box, Principal Engineer

Cloud Application Architecture Trends | Page 1

Table of Contents
	 Introduction	 2

1.	 Controlling Hardware Through Code	 3

2	 Implementing Services	 4

3	 Container-Based Architecture	 5

4.	 Service Discovery 	 6

5.	 Summary: Architecting for the Cloud	 7

Cloud Application Architecture Trends | Page 2

Introduction
The flexibility of the cloud and the ability to create—or remove—a resource on demand
has fundamentally changed the way that IT thinks about compute resources. As more
enterprises power their websites and applications in the cloud, they should be aware of
the differences between designing for the cloud and designing for physical servers.

Applying traditional IT architecture models will work on the cloud, however, a business
won’t benefit from the many advantages inherent in a cloud environment. This paper
discusses some of the cloud application trends that an enterprise should consider before
writing their next app.

Cloud Application Architecture Trends | Page 3

1.	Controlling Hardware Through Code
As applications have increasingly exposed their APIs, many developers are familiar with how
to pull data in and out of web services. This availability of information has enabled developers
to utilize data exposed by popular applications to enhance their own application. Consider, for
example, the many mobile apps that take advantage of location data from other services.

APIs can be used as an interface between an app and its underlying hosting infrastructure. Most
cloud-hosting providers have exposed an API that can create, read, update or remove a cloud
server, enabling the app to modify its configuration environment on the fly. No longer is there a
need to cut a purchase order for procuring a server or to wait for the server to be racked, cabled
and configured. Servers in the cloud are created on demand.

When incorporating monitoring data—such as the number of connections or outgoing band-
width—an application can become “self-aware” and aware of its environment, scaling the
configuration as traffic exceeds set thresholds. Is there a surge in holiday shopping traffic? An
ecommerce app can place multiple cloud servers online to handle the deluge of requests. Has
the traffic returned to normal? The app can then tell the infrastructure to remove unnecessary
servers, allowing the business to provide the same level of service to consumers while decreasing
their costs. This underscores the importance of integrating your application with a cloud infra-
structure API.

However, not all cloud APIs are created equal. Some hosting providers build their cloud environ-
ment on closed standards. This means those API calls written into an application will only work
for that particular provider. Other cloud environments have an underlying open-source tech-
nology, such as OpenStack. This enables those API calls to be applied to an array of cloud hosts
built on that same open technology.

As businesses examine moving to the cloud, they need to not only consider implementing their
hosting provider’s cloud API into their app, but also whether their cloud host’s API is based on
open or closed standards. This maximizes their flexibility moving forward.

Cloud Application Architecture Trends | Page 4

2.	Implementing Services
Monolithic applications—those systems with a web front end, application and database on
the same host server—that once dominated were primarily a function of the smallness of
the Internet at the time. Not only were fewer people online, their Internet activity was teth-
ered to the confines of a desk. The amount of data read and written was modest by today’s
standards, and the file sizes smaller. Consequently, each tier of the application could run on
an overprovisioned server configuration without much fear of traffic toppling it over. That is
not the case any more.

With the incredible amount of data that is both recorded and served up today, splitting
an application into distinct parts—or services—gives the ability to bulk up resources for a
targeted portion of the app that is under load.

This notion of modular design first originated with splitting out the web, application and
database tiers of an application. However, service-oriented architecture (SOA) has since
evolved to become more granular, isolating services with distinct roles.

These different pockets of infrastructure, with unique roles in the overarching application,
are then independently scalable. As site traffic increases a company can react by bringing on
resources in an intelligent manner, providing an individual service with the needed computa-
tional power, ultimately saving on infrastructure costs.

For example, a monolithic ecommerce application could be split into multiple pieces: user
authentication, sign up, profile settings, storefront, shopping cart and checkout. Further-
more, each service’s web, application and database layer can be split out. This allows for
more resources to be applied to the shopping cart database while decreasing the requisite
resources for the storefront’s web nodes. By isolating these services from each other a busi-
ness can ensure that the proper amount of compute resources are available for the load on
each particular service.

Furthermore, SOA also carries some benefits when it comes to application security. Archi-
tecting your app this way gives you better control on who gets to access particular services.
In the past, you might have an application that handled web requests from users and, in
the same codebase, made a backend call to the database to ensure they were authenticated
properly. This can result in potential security exploits—SQL injection as an example—that
could lead to your front end making a bad database call and compromising the system.

With SOA, you can have “dumb” front-end code that takes requests from users and passes
them to your authentication system via a REST API. The authentication system then does all
the actual lookups, providing insulation between the authentication database, the front-end
and ultimately the user. Additionally, by requiring the front-end servers to talk to the authen-
tication servers, you are able to keep your authentication API and code hidden from users
and are better protected from the Internet at large.

Finally, architecting an application around services allows your operations team to be more
targeted in rolling out updates. For example, if the user authentication system needs to be

Cloud Application Architecture Trends | Page 5

patched, the team can rollout updates that target that service only. The remaining services
continue to operate normally, without interruption.

SOA can extend beyond those services that your development team defines. One of the
strengths of the cloud is the ecosystem of services that has evolved. Most likely, your
cloud-hosting provider will have an array of products that you can consume as a service.
For example, instead of architecting a load balancing solution that routes traffic through
your configuration based on sophisticated rules, find out if your provider offers a load-
balancing solution as a service. Additionally, they might offer a variety of solutions—
including load balancing, database (to store transactional information that the app gener-
ates), object storage (a place to store large files on a content delivery network) or block
storage (an extension of your cloud server’s hard drive)—for you to consume as services.

Furthermore, third-party companies have a variety of tools and services that can assist
with anything from load testing, user authentication, DDoS mitigation and more. In order
to decrease the time to market, encourage your development team to focus on the core
functionality of the app while browsing cloud marketplaces for tools created to solve
common problems.

3.	 Container-Based Architecture
The past year has seen major developments in container-based architecture for applica-
tions. A container is a self-enclosed layer of virtualization that contains all the required
pieces to run an application: resources, frameworks and libraries.

The notion of Linux Containers (LXC) has been in the Linux kernel since the 2.6.24 release
in 2008. However, Docker, an open source project that is a layer built on top of LXC,
has popularized the use of containers for cloud architecture. Plainly put, Docker is an API
between containers and LXC that enables the creation, deployment and unpackaging of a
container. Once unpackaged, a container can connect directly to the computational power
on a host machine by taking advantage of the Linux kernel’s cgroups ability to isolate
resources like processing power, RAM, block I/O and more.

The advantage of architecting an app with containers is that they help simplify the deploy-
ment and server configuration process. A business simply has to build the container once,
including the required versions of frameworks or services and installing necessary libraries
inside that container.

The container can then be shipped to an unlimited amount of host machines, ensuring
that the configuration settings are identical. Human error for server, framework and
application configuration is significantly mitigated. This results in consistency across your
environment with your time investment in compiling the application only happening once.

This is a major improvement with respect to current config-management strategies. When
using config-management, you must still install, setup, compile and restart everything on
each server. With containers, you simply swap out the old container for the new container.

Another benefit of using containers is that multiple versions of a framework can run on
the same host machine. In the non-container world, it can be challenging to run multiple
Ruby applications with different Ruby versions or vastly different versions of Ruby Gems

https://cloudtools.rackspace.com/home
http://kernelnewbies.org/Linux_2_6_24
https://www.docker.com

Cloud Application Architecture Trends | Page 6

on the same server—you’d have to use Ruby Version Manager (RVM). Indeed, RVM is
one of the few options outside of containers that has resolved this difficult problem.
However, it is an extremely complicated mechanism for running multiple Ruby versions
and can cause issues or complications in production systems.

Containers have solved these problems by allowing a development and operations
team to package those apps that require different versions of Ruby and Ruby Gems
into distinct containers with Docker. Because all the information needed to run the app
is self-contained, the containers can live side by side on the same host machine without
any collisions or problems.

Both the development and operations communities have rallied to support Docker and
container-based architecture. Originally released as open source in March 2013, the
momentum around Docker has exploded, with over 14,400+ stars, 2,600+ forks, 560+
contributors and 10,100+ commits on GitHub at the time of this article. Additionally,
Docker has received support and developed partnerships with many well-respected
technology companies and has been implemented in some of the most popular
applications on the web today. This level of activity proves that containers are moving
from a very futuristic technology to one that will quickly become a mainstream way of
architecting applications.

4.	Service Discovery
As containers become more prominent, it will be important to ensure that they
connect to different services—such as a database—to ensure that the bits and bytes
flow in the right manner. This is where service discovery comes into play.

Service discovery essentially allows an application to ask where all the other pieces are
located. It helps to identify services such as databases, caching layers or other peers,
while preventing the developer from hard-coding IP addresses or domain information
inside the application.

This is becoming a trend as many apps are beginning to take service-oriented architec-
ture to the extreme, creating small services that fulfill very targeted functions. Conse-
quently, there are many APIs to interact with those services and it is important for the
application to understand where each is located. Additionally, no developer wants to
update every container any time the location of a service changes.

SmartStack, a tool open sourced by Airbnb, helps an application discover the different
services it needs to run. Composed of two different pieces that run on the host
machine (Nerve and Synapse), SmartStack understands which services are available
to be consumed. SmartStack uses Zookeeper as the record of truth for maintaining,
adding and subtracting the information about the services.

Nerve performs a health check on a service as it comes online, and creates a record
of the service in Zookeeper, a centralized service for maintaining configuration infor-
mation. Synapse runs alongside your application, and takes the information from
Zookeeper and configures a locally running load-balancer (HAProxy) to show exactly

https://www.docker.com/partners/find/
https://www.docker.com/partners/find/
https://www.docker.com/resources/usecases/
https://www.docker.com/resources/usecases/
http://nerds.airbnb.com/smartstack-service-discovery-cloud/

Cloud Application Architecture Trends | Page 7

what services are available and where they are located.

For example, if a server named app1 needs to talk with another called app2, it doesn’t
need to know the address for app2. App1 simply needs to talk locally to HAProxy,
which will route it to the proper destination. If the health or addresses for one of
the nodes in app2 changes, Nerve will update Zookeeper and Synapse will update
HAProxy to ensure that everything gets routed properly.

This takes all the routing logic out of the application, removing the need for devel-
opers to hard code this information. This allows the infrastructure to be completely
distributed—as containers are unpackaged they know exactly what services are
available and where to find them. SmartStack takes away much of the complexity of
managing a distributed application.

Summary: Architecting for the Cloud
While you can architect an application for the cloud in a traditional manner, doing
so will fail to unlock the true potential of the platform. Adopting some of these
modern application architecture trends can help you achieve the scalability and flex-
ibility of a self-aware application, while limiting the amount of error introduced by
manual configuration. This paradigm shift—breaking an application into smaller,
modular pieces that each serves a unique purpose—is dominating the landscape.
Incorporating any of these architecture trends can help a business better leverage the
cloud, however, it is prudent to keep an eye on future IT hosting trends as this space
continues to evolve at a rapid pace.

Cloud Application Architecture Trends | Page 8

About Rackspace
Rackspace® (NYSE: RAX) is the #1 managed cloud company. Its technical expertise and Fanatical Support®
allow companies to tap the power of the cloud without the pain of hiring experts in dozens of complex
technologies. Rackspace is also the leader in hybrid cloud, giving each customer the best fit for its unique
needs — whether on single- or multi-tenant servers, or a combination of those platforms. Rackspace is the
founder of OpenStack®, the open-source operating system for the cloud. Based in San Antonio, Rackspace
serves more than 200,000 business customers from data centers on four continents.

GLOBAL OFFICES
Headquarters Rackspace, Inc.
5000 Walzem Road | Windcrest, Texas 78218 | 1-800-961-2888 | Intl: +1 210 312 4700
www.rackspace.com

UK Office

Rackspace Ltd.
5 Millington Road
Hyde Park Hayes
Middlesex, UB3 4AZ
Phone: 0800-988-0100
Intl: +44 (0)20 8734 2600
www.rackspace.co.uk

Benelux Office

Rackspace Benelux B.V.
Teleportboulevard 110
1043 EJ Amsterdam
Phone: 00800 8899 00 33
Intl: +31 (0)20 753 32 01
www.rackspace.nl

Hong Kong Office

9/F, Cambridge House, Taikoo Place
979 King’s Road,
Quarry Bay, Hong Kong
Sales: +852 3752 6488
Support +852 3752 6464
www.rackspace.com.hk

Australia Office

Level 4, 210 George Street,
Sydney, NSW 2000
Phone: 1-800-722577
www.rackspace.com.au

© 2014 Rackspace US, Inc. All rights reserved.

This whitepaper is for informational purposes only. The information contained in this document
represents the current view on the issues discussed as of the date of publication and is provided “AS IS.”
RACKSPACE MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, AS TO
THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS DOCUMENT AND RESERVES THE RIGHT
TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT/SERVICES DESCRIPTION AT ANY TIME WITHOUT
NOTICE. USERS MUST TAKE FULL RESPONSIBILITY FOR APPLICATION OF ANY SERVICES AND/OR PROCESSES
MENTIONED HEREIN. EXCEPT AS SET FORTH IN RACKSPACE GENERAL TERMS AND CONDITIONS, CLOUD
TERMS OF SERVICE AND/OR OTHER AGREEMENT YOU SIGN WITH RACKSPACE, RACKSPACE ASSUMES
NO LIABILITY WHATSOEVER, AND DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO ITS
SERVICES INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT.

Except as expressly provided in any written license agreement from Rackspace, the furnishing of this
document does not give you any license to patents, trademarks, copyrights, or other intellectual property.

Rackspace, Fanatical Support, and/or other Rackspace marks mentioned in this document are either
registered service marks or service marks of Rackspace US, Inc. in the United States and/or other countries.
OpenStack is either a registered trademark or trademark of OpenStack, LLC in the United States and/or
other countries. Third-party trademarks and tradenames appearing in this document are the property
of their respective owners. Such third-party trademarks have been printed in caps or initial caps and are
used for referential purposes only. We do not intend our use or display of other companies’ tradenames,
trademarks, or service marks to imply a relationship with, or endorsement or sponsorship of us by, these
other companies.

http://www.rackspace.com
http://www.rackspace.co.uk
http://www.rackspace.nl
http://www.rackspace.com.hk
http://www.rackspace.com.au

