
CLOUD:
VISION TO REALITY

Cloud: Vision to Reality | Cover
© 2011 Rackspace US, Inc.

Prepared by:

Duncan Rutland, Advisory Services Enterprise Architect, Rackspace® Hosting

Introduction
There is no longer any question that the cloud computing model will be the prevailing style of delivery
for computing over the coming decades; Forrester Research predicts that the global market for cloud
computing will grow from $40.7 billion in 2011 to more than $241 billion in 20201. Greenfield application
development projects can be designed from the outset to benefit from cloud computing features such
as elastic scalability, automated provisioning, infrastructure level APIs, object storage services and other
middleware services. However, for existing legacy applications (particularly in the corporate space) the
journey to cloud is not quite so straightforward.

Table of Contents
1. Introduction
2. Considerations
	 2.1	Security	Compliance
	 	 2.1.1	Why	the	fuss?
	 	 2.1.2	Key	Factor:	Data	Sensitivity
	 	 2.1.3	Mitigation	Strategies
	 2.2	Application	Architecture
	 	 2.2.1	Functional	Separation
	 	 2.2.2	Horizontal	Scalability
	 	 2.2.3	Coupling
	 	 2.2.4	Shared	Physical	Compliance
	 	 2.2.5	Good	Design	Practices
	 2.3	Performance
	 	 2.3.1	Performance	Overhead
	 	 2.3.2	Resource	Contention
	 	 2.3.3	Instance	Size	Mismatch
	 	 2.3.4	Latency
	 2.4	Method	of	Consumption
	 2.5	Impact	on	Availability
	 2.6	Maturity	of	Operations
3. Summary

Cloud: Vision to Reality | Page 2
© 2011 Rackspace US, Inc.

1 Sizing The Cloud, Forrester Research, Inc., April 2011

Considerations
2.1		 	 SECURITY/COMPLIANCE
Concerns around security and/or compliance are often regarded as the primary barrier to entry with regard to public
cloud computing. These concerns can largely be attributed to the multi-tenant nature of public cloud computing.

2.1.1	 WHY	THE	FUSS?
Public cloud providers are able to optimize the utilization of physical resources by sharing them between multiple
customers using virtualization technologies. This multi-tenant model will always have a degree of associated risk since
the underlying hardware and software, being engineered by human-beings, is susceptible to flaws that can be exploited
for malicious purposes.

2.1.2	 KEY	FACTOR:	DATA	SENSITIVITY
An important factor to consider when evaluating the security requirements of an application is the sensitivity of
information that is being stored, processed or transmitted by the application. Areas to be particularly cautious around
are:

• Personally Identifiable Information (PII) such as names, national identification numbers, dates of birth, drivers
license/passport numbers, etc.

• Personal Health Information (PHI) such as medical history, test results, insurance information
• Financial information such as credit card numbers and account numbers
• Corporate confidential information

2.1.3	 MITIGATION	STRATEGIES

So your application is handling some sensitive data. What can you do to mitigate the risk of unauthorized access to this data?

It is important to follow standard industry best practices (like those prescribed by the PCI-DSS standard). Some important
areas of focus are deploying perimeter and host firewalls with appropriate policies, ensuring software is kept up to date,
disabling unnecessary services, enforcing strong permissions and utilizing 2-factor user authentication. However, in the
event of an intrusion here are two commonly used practices to help mitigate the risk of a breach of confidentiality:

 1. Encryption. One option to mitigate the risk of breaching confidentiality/integrity of data is to use public key
cryptography at the application layer. This has the benefit of reducing the risk associated with unauthorized access
to encrypted data. However, this approach is only as robust as the access control mechanism around the private keys.
Failure to adequately protect private encryption keys and passphrases can make the use of encryption ineffective.
One promising area of research that may alleviate this risk is Fully Homomorphic Encryption (FHE), which allows
operations to be performed on data without decrypting it. This could remove the need for private encryption keys
to be stored locally on processing nodes, potentially reducing the impact of a malicious intrusion.

 2. Functional	Separation. Sensitive data is often only being handled by certain areas of your application (for example,
an e-commerce application typically only needs to process credit card details during the check-out phase of the
transaction). This can be exploited by functionally decomposing the application into separate components, such as
using a Service Oriented Architecture, and choosing different hosting models for different components depending
on their own security requirements. A hybrid hosting model can be leveraged for an e-commerce application
by hosting the back-end database and check-out components in a private cloud environment, and hosting the
catalog, shopping cart and other less sensitive components in a public cloud environment.

While future advances in software and hardware could mitigate these concerns, at this time security remains a key
consideration when contemplating a transition to cloud computing.

2.2	APPLICATION	ARCHITECTURE

Traditional approaches to application architecture do not always translate effectively to a cloud computing model.
Monolithic applications that are tightly coupled, scale vertically and rely on shared physical components for
high-availability may require re-engineering to function optimally in the cloud. Here we explore some of these
architectural considerations.

Cloud: Vision to Reality | Page 3
© 2011 Rackspace US, Inc.

2.2.1	 FUNCTIONAL	SEPARATION
One of the factors in determining how well a given application will translate into a cloud context is the degree of
functional separation within the application. This can typically be expressed as the number of different roles or functions
that make up the application. Over the last two decades, software architecture has become increasingly de-composed
functionally:

Synchronous workflow involving two serial transactions

Asynchronous workflow involving two parallel transactions

REQUEST

REQUEST

RESPONSE

RESPONSE

SEQUENCE 1: Initial request from Process A to Process B

SEQUENCE 2: Process A now waits while Process B works

SEQUENCE 3: Eventually Process B responds to Process A

SEQUENCE 4: Process A now continues working, and sends the next request to process C

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 5: Process A waits again while Process C works

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 6: Process C eventually responds and Process A can continue work

Shared Physical Compenents:
Healthy Operation

Failure of Shared Component Occurs

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

REQUEST

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

Process B Process C

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

REQUEST

REQUEST

SEQUENCE 1: Initial request from Process A to Process B

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

Process B Process C
Process A

Process B Process C
Process A

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

CALLING PROCESS

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 2: Process A continues to work whilst B works, sends next request to Process C
 and continues with other work.

SEQUENCE 3: Process B responds to Process A whilst Process C is working.

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process B Process C
Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

RESPONSE

RESPONSE

SEQUENCE 4: Process C responds to Process A.

Process B Process C
Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process B Process C
Process A

Process B Process C

Process A

Process B Process C
Process A

Process B
Process A

Process C

Process B
Process A

Process C

LOW LATENCY (1ms)

SERVER

SERVER

LOW LATENCY (1ms)

LOW LATENCY (1ms)

SERVER

HIGH LATENCY (50ms)

HIGH LATENCY (50ms)

HIGH LATENCY (50ms)

SERVER

SERVER

SERVER

SERVER

Entire System Enters Failure State

Shared Nothing Architecture

Shared Nothing Architecture:
Healthy Operation

Failure Occurs but remaining
nodes function

Client/Server
presentation/business
logic separated from
data layer. For example,
a typical VB6 application
composed of two
layers: a fat client binary
comprising UI/logic and a
separate database tier.

SOA
Fine-grained functional separation. For
example, an e-commerce application may
be de-composed into many hundreds
of separate services such as shopping
cart, checkout, recommendations, order
tracking etc.

Synchronous workflow involving two serial transactions

Asynchronous workflow involving two parallel transactions

REQUEST

REQUEST

RESPONSE

RESPONSE

SEQUENCE 1: Initial request from Process A to Process B

SEQUENCE 2: Process A now waits while Process B works

SEQUENCE 3: Eventually Process B responds to Process A

SEQUENCE 4: Process A now continues working, and sends the next request to process C

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 5: Process A waits again while Process C works

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 6: Process C eventually responds and Process A can continue work

Shared Physical Compenents:
Healthy Operation

Failure of Shared Component Occurs

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

REQUEST

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

Process B Process C

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

REQUEST

REQUEST

SEQUENCE 1: Initial request from Process A to Process B

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

Process B Process C
Process A

Process B Process C
Process A

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

CALLING PROCESS

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 2: Process A continues to work whilst B works, sends next request to Process C
 and continues with other work.

SEQUENCE 3: Process B responds to Process A whilst Process C is working.

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process B Process C
Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

RESPONSE

RESPONSE

SEQUENCE 4: Process C responds to Process A.

Process B Process C
Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process B Process C
Process A

Process B Process C

Process A

Process B Process C
Process A

Process B
Process A

Process C

Process B
Process A

Process C

LOW LATENCY (1ms)

SERVER

SERVER

LOW LATENCY (1ms)

LOW LATENCY (1ms)

SERVER

HIGH LATENCY (50ms)

HIGH LATENCY (50ms)

HIGH LATENCY (50ms)

SERVER

SERVER

SERVER

SERVER

Entire System Enters Failure State

Shared Nothing Architecture

Shared Nothing Architecture:
Healthy Operation

Failure Occurs but remaining
nodes function

N-tier
presentation, business
logic and persistence
layers entirely separated,
often with additional
messaging and caching
layers.

Synchronous workflow involving two serial transactions

Asynchronous workflow involving two parallel transactions

REQUEST

REQUEST

RESPONSE

RESPONSE

SEQUENCE 1: Initial request from Process A to Process B

SEQUENCE 2: Process A now waits while Process B works

SEQUENCE 3: Eventually Process B responds to Process A

SEQUENCE 4: Process A now continues working, and sends the next request to process C

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 5: Process A waits again while Process C works

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 6: Process C eventually responds and Process A can continue work

Shared Physical Compenents:
Healthy Operation

Failure of Shared Component Occurs

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

REQUEST

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

Process B Process C

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

REQUEST

REQUEST

SEQUENCE 1: Initial request from Process A to Process B

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

Process B Process C
Process A

Process B Process C
Process A

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

CALLING PROCESS

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 2: Process A continues to work whilst B works, sends next request to Process C
 and continues with other work.

SEQUENCE 3: Process B responds to Process A whilst Process C is working.

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process B Process C
Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

RESPONSE

RESPONSE

SEQUENCE 4: Process C responds to Process A.

Process B Process C
Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process B Process C
Process A

Process B Process C

Process A

Process B Process C
Process A

Process B
Process A

Process C

Process B
Process A

Process C

LOW LATENCY (1ms)

SERVER

SERVER

LOW LATENCY (1ms)

LOW LATENCY (1ms)

SERVER

HIGH LATENCY (50ms)

HIGH LATENCY (50ms)

HIGH LATENCY (50ms)

SERVER

SERVER

SERVER

SERVER

Entire System Enters Failure State

Shared Nothing Architecture

Shared Nothing Architecture:
Healthy Operation

Failure Occurs but remaining
nodes function

1

1

3

3

2

2

Cloud: Vision to Reality | Page 4
© 2011 Rackspace US, Inc.

Functional separation within an application has other benefits:

1.	Scalability: By de-composing an application into a set of simpler sub-components, greater scalability can be
achieved by allowing these functional units to be spread out onto a larger pool of resources. This pattern of
application architecture is referred to as a Service Oriented Architecture (SOA).

2.	Security:	Often, sensitive data is manipulated by certain parts of the application and not others (for example, the
check-out of an e-commerce application that handles credit card data). If these parts of the application can be
functionally separated, then the need for stricter security controls and regulatory compliance can potentially be
reduced. Using this model, a combination of private dedicated resources (for parts of the application that require
more rigorous security measures) and public shared resources (for parts of the application that handle less sensitive
data) can be combined within a single solution.

2.2.2	 HORIZONTAL	SCALABILITY
One of the cost-saving features of public cloud computing is the ability to match the supply of computing resources to
the demand, which is made possible by the metered or utility billing model. However, in order to access this feature,
the high-level architecture of the application must facilitate the scaling up and down of resources (commonly known
as “elastic” scalability).

More explicitly, the application must be able to scale horizontally and preferably in an automated or semi-automated
fashion. Furthermore, licensing considerations come into play. Many commercial enterprise applications are licensed per
instance, so scaling these instances horizontally rather than vertically may be cost-prohibitive. Open Source Software
(OSS) can be utilized whenever elastic scalability is required since there is no cost-impact from running a higher number
of nodes.

Cloud: Vision to Reality | Page 5
© 2011 Rackspace US, Inc.

Synchronous workflow involving two serial transactions

Asynchronous workflow involving two parallel transactions

REQUEST

REQUEST

RESPONSE

RESPONSE

SEQUENCE 1: Initial request from Process A to Process B

SEQUENCE 2: Process A now waits while Process B works

SEQUENCE 3: Eventually Process B responds to Process A

SEQUENCE 4: Process A now continues working, and sends the next request to process C

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 5: Process A waits again while Process C works

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 6: Process C eventually responds and Process A can continue work

Shared Physical Compenents:
Healthy Operation

Failure of Shared Component Occurs

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

REQUEST

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

Process B Process C

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

REQUEST

REQUEST

SEQUENCE 1: Initial request from Process A to Process B

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

Process B Process C
Process A

Process B Process C
Process A

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

CALLING PROCESS

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 2: Process A continues to work whilst B works, sends next request to Process C
 and continues with other work.

SEQUENCE 3: Process B responds to Process A whilst Process C is working.

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process B Process C
Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

RESPONSE

RESPONSE

SEQUENCE 4: Process C responds to Process A.

Process B Process C
Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process B Process C
Process A

Process B Process C

Process A

Process B Process C
Process A

Process B
Process A

Process C

Process B
Process A

Process C

LOW LATENCY (1ms)

SERVER

SERVER

LOW LATENCY (1ms)

LOW LATENCY (1ms)

SERVER

HIGH LATENCY (50ms)

HIGH LATENCY (50ms)

HIGH LATENCY (50ms)

SERVER

SERVER

SERVER

SERVER

Entire System Enters Failure State

Shared Nothing Architecture

Shared Nothing Architecture:
Healthy Operation

Failure Occurs but remaining
nodes function

2.2.3	 COUPLING
A key factor in determining how successfully an application will de-compose into layers that can scale elastically is the
nature of the coupling between those layers.

Many legacy applications were intended to be run
within a single OS instance or within the same
LAN, and the couplings between the different
functional layers of the application are often
synchronous in nature. Examples of this are:

 IPC
 RPC
 CORBA
 DCOM

A synchronous call between application
components means that after one component
sends a request to another, the sender stalls
and cannot continue doing useful work until the
response is received.

Cloud: Vision to Reality | Page 6
© 2011 Rackspace US, Inc.

Synchronous workflow involving two serial transactions

Asynchronous workflow involving two parallel transactions

REQUEST

REQUEST

RESPONSE

RESPONSE

SEQUENCE 1: Initial request from Process A to Process B

SEQUENCE 2: Process A now waits while Process B works

SEQUENCE 3: Eventually Process B responds to Process A

SEQUENCE 4: Process A now continues working, and sends the next request to process C

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 5: Process A waits again while Process C works

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 6: Process C eventually responds and Process A can continue work

Shared Physical Compenents:
Healthy Operation

Failure of Shared Component Occurs

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

REQUEST

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

Process B Process C

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

REQUEST

REQUEST

SEQUENCE 1: Initial request from Process A to Process B

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

Process B Process C
Process A

Process B Process C
Process A

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

CALLING PROCESS

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 2: Process A continues to work whilst B works, sends next request to Process C
 and continues with other work.

SEQUENCE 3: Process B responds to Process A whilst Process C is working.

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process B Process C
Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

RESPONSE

RESPONSE

SEQUENCE 4: Process C responds to Process A.

Process B Process C
Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process B Process C
Process A

Process B Process C

Process A

Process B Process C
Process A

Process B
Process A

Process C

Process B
Process A

Process C

LOW LATENCY (1ms)

SERVER

SERVER

LOW LATENCY (1ms)

LOW LATENCY (1ms)

SERVER

HIGH LATENCY (50ms)

HIGH LATENCY (50ms)

HIGH LATENCY (50ms)

SERVER

SERVER

SERVER

SERVER

Entire System Enters Failure State

Shared Nothing Architecture

Shared Nothing Architecture:
Healthy Operation

Failure Occurs but remaining
nodes function

A solution to this problem could be to implement
asynchronous couplings between application
components. Under this model, after the sender
has delivered a request there is no blocking; the
flow of execution can continue and the response
can be handled when appropriate. This pattern is
particularly effective when the latency between
components is large and/or variable, and
inherently lends itself to applications that need
to scale. The most frequent implementation of
an asynchronous coupling is the message queue.
Some common examples are:

 MSMQ
 JMS
 RabbitMQ

Cloud: Vision to Reality | Page 7
© 2011 Rackspace US, Inc.

Cloud: Vision to Reality | Page 8
© 2011 Rackspace US, Inc.

Physical resources (such as
storage arrays being shared
between multiple database
servers) that are shared between
two or more processing nodes
can become bottlenecks and
inhibit scalability. They also
effectively bind the instances
into a single fault domain, so
that a failure of the shared
component will result in a failure
of the entire sub-system.

A common design pattern to
alleviate this risk is the Shared
Nothing Architecture (SNA),
which relies on replication and
other inter-node synchronization
methods to achieve the goal
of high-availability and fault-
tolerance without relying on
shared components.

Synchronous workflow involving two serial transactions

Asynchronous workflow involving two parallel transactions

REQUEST

REQUEST

RESPONSE

RESPONSE

SEQUENCE 1: Initial request from Process A to Process B

SEQUENCE 2: Process A now waits while Process B works

SEQUENCE 3: Eventually Process B responds to Process A

SEQUENCE 4: Process A now continues working, and sends the next request to process C

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 5: Process A waits again while Process C works

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 6: Process C eventually responds and Process A can continue work

Shared Physical Compenents:
Healthy Operation

Failure of Shared Component Occurs

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

REQUEST

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

Process B Process C

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

REQUEST

REQUEST

SEQUENCE 1: Initial request from Process A to Process B

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

Process B Process C
Process A

Process B Process C
Process A

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

CALLING PROCESS

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

SEQUENCE 2: Process A continues to work whilst B works, sends next request to Process C
 and continues with other work.

SEQUENCE 3: Process B responds to Process A whilst Process C is working.

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process B Process C
Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

RESPONSE

RESPONSE

SEQUENCE 4: Process C responds to Process A.

Process B Process C
Process A

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

var script=”node
counter=1
while(counter <11
document.write(
counter++
> //ends count
if counter =+ 12
end.count

watch(counter.client)
document.process
(interest.apt)++3
document.present
} //update acct
sum.interest && apr
echo $amount...

Process B Process C
Process A

Process B Process C

Process A

Process B Process C
Process A

Process B
Process A

Process C

Process B
Process A

Process C

LOW LATENCY (1ms)

SERVER

SERVER

LOW LATENCY (1ms)

LOW LATENCY (1ms)

SERVER

HIGH LATENCY (50ms)

HIGH LATENCY (50ms)

HIGH LATENCY (50ms)

SERVER

SERVER

SERVER

SERVER

Entire System Enters Failure State

Shared Nothing Architecture

Shared Nothing Architecture:
Healthy Operation

Failure Occurs but remaining
nodes function

Shared Nothing Architecture:
Healthy Operation

Failure Occurs but remaining
nodes function

2.2.4	 SHARED	PHYSICAL	COMPONENTS

A common design patternA common design pattern

2.2.5	 GOOD	DESIGN	PRACTICES
In conclusion, the following examples of design choices translate particularly well when deploying applications in the cloud:

• Service Oriented Architecture (SOA) – where your application is split into many separate functional components
• Asynchronous Messaging (Loose coupling) – such as message queues
• Shared Nothing Architecture (SNA) – where there are no shared physical components between nodes
• Open Source Software (OSS) – due to the inhibitory impact proprietary licensing can have on scalability

2.3		 	 PERFORMANCE
The utilization of physical resources by an application is a pertinent factor when choosing a hosting strategy, and valid
concerns around performance are regarded as one of the barriers to entry when evaluating virtualization (either within
a private dedicated environment or with a multi-tenant cloud).

2.3.1	 PERFORMANCE	OVERHEAD
Acting as an abstraction layer between a guest OS and the physical hardware, the hypervisor must juggle physical
resources between multiple competing consumers, whilst maintaining the illusion that they each have sole dominion. This
juggling act comes at a price: the brokering of physical resources, handling I/O interrupts, page faults, context switching
between VM instances and other activities all consume additional resources. Disk I/O in particular is problematic due
to the PCI bus not being virtualization-aware, so many hypervisors are forced to emulate the entire device driver at a
significant performance penalty. Fortunately, advances in hardware assisted virtualization (EPT, PCI-SIG SR-IOV) and the
use of para-virtualization techniques (altering the OS to become aware of the hypervisor) are reducing this performance
overhead. These new features could become ubiquitous within 3-5 years, but for now we should be cognizant of these
constraints.

2.3.2	 RESOURCE	CONTENTION
Many providers of public clouds are able to aggregate and over-provision many competing customer workloads
on shared physical hardware under the assumption that consumers will not all want access to the same resources
simultaneously. However, due to the unpredictability of demand from competing workloads, observed performance
can be variable in many public clouds.

2.3.3	 INSTANCE	SIZE	MISMATCH
Another consideration is around any mismatch between the VM instance size (usually defined as the quantity of CPU, RAM
and disk resource assigned to the VM) required by the application, and the instance sizes available from the service provider.

Many scale cloud providers use fixed instance sizes to allow efficient allocation of resources into physical hardware
boundaries. There may often be a mismatch between the instance size the application actually requires to function
acceptably and the instance size available.

This can lead to wastage (where the consumer pays for resources that are not being used) or under-provisioning in
which case it may be necessary to scale the application horizontally across multiple nodes. This is not always possible
with monolithic applications that were not designed from the outset to scale horizontally.

Cloud: Vision to Reality | Page 9
© 2011 Rackspace US, Inc.

Legacy applications that were designed in the Client/Server assumed that the Client and Server components would
be located together, with very low latency between them. They often make serveral “round-trips” of dialogue when
processing user requests.

Sequence	1:	End-user interacts with client/front-end GUI

Sequence	2:	Client communicates with back-end server
(3 round-trips, elapsed time = >6ms)

Sequence	3: Client responds back to end-user.

USER

REQUEST

RESPONSE

HIGH LATENCY (50ms)

HIGH LATENCY (50ms)

HIGH LATENCY (50ms)

CLIENTSERVER

SERVER

USERCLIENTSERVER

USERCLIENT

Cloud: Vision to Reality | Page 10
© 2011 Rackspace US, Inc.

USER

REQUEST

RESPONSE

LOW LATENCY (1ms)

CLIENTSERVER

SERVER

USER

LOW LATENCY (1ms)

LOW LATENCY (1ms)

CLIENTSERVER

USERCLIENT

Example 2

Example 1

2.3.4	 LATENCY

Sequence	1:	End-user interacts with client/
front-end GUI

Sequence	2:	Client communicates with
back-end server (3 round-trips, elapsed
time = >300ms)

Sequence	3: Client responds back to
end-user.

Client/presentation layer and back-end server are located on the same LAN

Client/presentation layer and back-end server are located on the same WAN

However, when moving these applications to an external service provider, the client and server component will be
separated. For these types of applications, this increase in latency between the client and the server can lead to a
catastrophic degradation of performance. Technologies such as remote desktop and application virtualization can
remedy this issue by locating the Client and Server together, and presenting a view of the GUI to the remote end-user.

2.4		 	 METHOD	OF	CONSUMPTION
The way an application/service is consumed by end-users is a critical factor when considering migrating to an external
service provider. In order to ascertain the impact of moving, it is essential to understand the consumers of the service
in terms of:

•	 Geographic	Location: What is the latency between the end-user and the service? At what hours of the
day do they consume the service?

•	 Method	of	Connectivity: How rigid is their connection into the service: do they traverse the internet, use
an IPSec VPN tunnel or a private WAN link?

•	 Client	 Type: Web browser clients are generally designed to perform well over a high-latency WAN
connection, whereas binary clients (like VB6) that follow traditional client-server architecture do not typically
withstand separation of client and server over even modest latencies.

2.5		 IMPACT	ON	AVAILABILITY
If your application is bound by an availability SLA or RPO/RTO metric this should be re-visited when considering moving
to an external service provider. Here are some common factors that you should consider:

1.	 Network	Latency	– Any change in network latency between primary and DR locations can potentially affect RPO
due to the impact on data replication. Additionally, application performance can be impacted when synchronous
replication is being utilized.

2.	 Network	Redundancy	– Imagine the scenario: you have moved a business critical service from an in-house
hosting facility to a remote service provider. Your internal users must now traverse your primary internet connection
to access the application. Bottom line: The uptime of your application is now dependent on the uptime of your
internet connection. For business critical applications, this link should be protected.

3.	 Operational	Latency	– Your IT operations may be used to having direct control over the technology platform
behind an application. When moving an application to a remote service provider, they will no longer have the
same degree of control. Previously, executing a failover to a Disaster Recovery solution could be performed
entirely by your internal IT operations team. However, after migrating to an external service provider, many
actions must be performed by an external party. This adds additional latency into the process as requests are
raised, authorized and tasks synchronized between application owner and service provider. The result? Your RTO
will increase.

2.6		 	MATURITY	OF	IT	OPERATIONS														
When assessing the feasibility of moving services from an in-house to an externally hosted context, the maturity of an
organization’s IT Service Management (ITSM) capability is of concern.

Traditionally, many internal IT operations follow a Plan -> Build -> Operate cycle
and may have varying degrees of governance in place around how the service
is delivered. Even when there is no formal governance in place, the business is
usually able to scrutinize and govern the delivery of the service due to it being
facilitated internally.

Cloud: Vision to Reality | Page 11
© 2011 Rackspace US, Inc.

When outsourcing technology to an external
provider, this transparency is lost and the customer
must rely on externally exposed interfaces such as:
 help desks
 account/service managers
 online portals and APIs
in order to gain visibility over the delivery of the
service.

So what are some ways a customer can try to
ensure that the vendor is meeting contracted SLAs
for availability and quality?

Adopting a formal ITSM framework such as ITIL
or ISO20000 provides an organization with the
governance structure necessary to manage the
delivery of IT services both internally and from
external suppliers. Thus, your IT organization should
naturally move away from traditional operations
towards a service management function.

Cloud: Vision to Reality | Page 12
© 2011 Rackspace US, Inc.

Account / Service Managers / Help Desks / Portal API

Customer

Device
Layer

Virtualization
Layer

Operating
System Layer

Application
Infrastructure

Layer

Networking
Layer

Data Center
Layer

While the task of assessing an installed base of legacy applications may seem daunting at first glance, the problem is
not insurmountable. Here are some “Keys to Success” when performing such an assessment:

• First, effective decisions to determine what hosting model your application is best suited to cannot be made
without supporting data:

 ° Install a monitoring system to collect inventory, performance and capacity data from your infrastructure.
 ° Gather all documentation relative to the application and supporting infrastructure into a central location, and

 address any gaps.

• Second, define and prioritize what business goal(s) you need to satisfy, such as cost reduction, risk mitigation, or
increased focus & agility.

• Next, it is important to determine the scope of your assessment and prioritize applications in terms of business
criticality, size/complexity and known migration feasibility. Focus first on some “quick wins” that are not business
critical and can serve as proof-of-concept cases.

• Finally, assess the feasibility of migrating your application in terms of:

 ° Security & Performance – How amenable is your application to being virtualized and running in a public or
 private cloud context?

 ° Application Architecture – Can your application function optimally in a cloud context without re-engineering?
° Consumption – How do your end-users consume your application/service and what are the implications of
 migrating to the cloud?

 ° Operations/Governance – Is your IT operations organization ready to transition to an IT Service Management function?
 ° Integration – How tightly coupled is your application into its present environment?
 ° Supply/Demand – Does sufficient variation in demand and supply-side flexibility exist to permit the metered-

 billing benefits of multi-tenant cloud computing to be leveraged in order to reduce costs?

If you need help in assessing the feasibility of migrating your legacy applications to a cloud hosting model,
Rackspace can help. E-mail us directly at advisory_services@rackspace.com or visit
http://www.rackspace.com/enterprise_hosting/advisory_services/ for more details.

Summary

Cloud: Vision to Reality | Page 13
© 2011 Rackspace US, Inc.

DISCLAIMER
This Whitepaper is for informational purposes only and is provided “AS IS.” The information set forth in this document is intended as a guide

and not as a step-by-step process, and does not represent an assessment of any specific compliance with laws or regulations or constitute advice.

We strongly recommend that you engage additional expertise in order to further evaluate applicable requirements for your specific environment.

RACKSPACE MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, AS TO THE ACCURACY OR COMPLETENESS

OF THE CONTENTS OF THIS DOCUMENT AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT/SERVICES

DESCRIPTION AT ANY TIME WITHOUT NOTICE. RACKSPACE RESERVES THE RIGHT TO DISCONTINUE OR MAKE CHANGES TO ITS SERVICES

OFFERINGS AT ANY TIME WITHOUT NOTICE. USERS MUST TAKE FULL RESPONSIBILITY FOR APPLICATION OF ANY SERVICES AND/OR PROCESSES

MENTIONED HEREIN. EXCEPT AS SET FORTH IN RACKSPACE GENERAL TERMS AND CONDITIONS, CLOUD TERMS OF SERVICE AND/OR OTHER

AGREEMENT YOU SIGN WITH RACKSPACE, RACKSPACE ASSUMES NO LIABILITY WHATSOEVER, AND DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY, RELATING TO ITS SERVICES INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, AND NONINFRINGEMENT.

Except as expressly provided in any written license agreement from Rackspace, the furnishing of this document does not give you any license to

patents, trademarks, copyrights, or other intellectual property.

Rackspace, Rackspace logo, Fanatical Support, and/or other Rackspace marks mentioned in this document are either registered service marks or

service marks of Rackspace US, Inc. in the United States and/or other countries. OpenStack™ and OpenStack logo are either registered trademarks

or trademarks of OpenStack, LLC in the United States and/or other countries.

All other product names and trademarks used in this document are for identification purposes only to refer to either the entities claiming the

marks and names or their products, and are property of their respective owners. We do not intend our use or display of other companies’

tradenames, trademarks, or service marks to imply a relationship with, or endorsement or sponsorship of us by, these other companies.

© 2011 Rackspace US, Inc. All rights reserved.

